miR-141-3p is Poorly Expressed in Polycystic Ovary Syndrome and Correlates with Glucose and Lipid Metabolism
Author(s) -
Lingye Fan,
Chunyan Wang,
Ping Zhan,
Yaofang Liu
Publication year - 2021
Publication title -
international journal of endocrinology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.875
H-Index - 60
eISSN - 1687-8345
pISSN - 1687-8337
DOI - 10.1155/2021/2022938
Subject(s) - medicine , polycystic ovary , lipid metabolism , endocrinology , downregulation and upregulation , carbohydrate metabolism , insulin resistance , metabolic syndrome , insulin , obesity , biology , biochemistry , gene
Polycystic ovary syndrome (PCOS) is a common endocrinopathy with high prevalence. miR-141-3p downregulation was reported in PCOS rats. This study intended to investigate miR-141-3p expression in serum of PCOS patients and its correlation with glucose and lipid metabolism. A total of 100 PCOS patients and 100 healthy controls were enrolled in this study. Clinical parameters and glucose and lipid indexes were analyzed. A 3-month fat reduction intervention was conducted to PCOS-obese patients. Expressions of miR-141-3p and PTEN were detected. WHR and levels of TG, HDL-C, FBG, FINS, HOMA- β, and HOMA-IR showed significant differences in PCOS patients. miR-141-3p was downregulated in PCOS patients. Area under ROC curve of miR-141-3p diagnosing PCOS-obese patients was 0.985 with specificity 95.35% and flexibility 93.33%. Levels of glucose and lipid metabolism indexes were increased while HDL-C level was decreased in miR-141-3p low expression group. Indexes of PCOS-obese patients were improved and miR-141-3p was upregulated after fat reduction intervention. PTEN was upregulated in PCOS patients and negatively correlated with miR-141-3p. In conclusion, miR-141-3p was downregulated in PCOS patients and had higher diagnostic value on PCOS and associated with glucose and lipid metabolism. miR-141-3p might play a role in glucose and lipid metabolism in PCOS-obese patients by targeting PTEN.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom