Review of Breast Cancer Pathologigcal Image Processing
Author(s) -
Yanan Zhang,
Ke-rui XIA,
Changyi Li,
Ben-li WEI,
Bing Zhang
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/1994764
Subject(s) - breast cancer , artificial intelligence , image processing , cancer , medicine , deep learning , computer science , transfer of learning , image (mathematics)
Breast cancer is one of the most common malignancies. Pathological image processing of breast has become an important means for early diagnosis of breast cancer. Using medical image processing to assist doctors to detect potential breast cancer as early as possible has always been a hot topic in the field of medical image diagnosis. In this paper, a breast cancer recognition method based on image processing is systematically expounded from four aspects: breast cancer detection, image segmentation, image registration, and image fusion. The achievements and application scope of supervised learning, unsupervised learning, deep learning, CNN, and so on in breast cancer examination are expounded. The prospect of unsupervised learning and transfer learning for breast cancer diagnosis is prospected. Finally, the privacy protection of breast cancer patients is put forward.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom