A Cell Cycle Progression-Derived Gene Signature to Predict Prognosis and Therapeutic Response in Hepatocellular Carcinoma
Author(s) -
Yongfeng Hui,
Junzhi Leng,
DongYan Jin,
Di Liu,
Genwang Wang,
Qi Wang,
Yanyang Wang
Publication year - 2021
Publication title -
disease markers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 66
eISSN - 1875-8630
pISSN - 0278-0240
DOI - 10.1155/2021/1986159
Subject(s) - hepatocellular carcinoma , gene signature , cell cycle progression , signature (topology) , gene , cancer research , oncology , biology , carcinoma , medicine , cell cycle , gene expression , genetics , geometry , mathematics
Objective Dysregulation of cell cycle progression (CCP) is one of the hallmarks of cancer. Here, our study is aimed at developing a CCP-derived gene signature for predicting high-risk population of hepatocellular carcinoma (HCC).Methods Our study retrospectively analyzed the transcriptome profiling and clinical information of HCC patients from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) projects. Uni- and multivariate cox regression models were conducted for identifying which hallmarks of cancer were risk factors of HCC. CCP-derived gene signature was developed with LASSO method. The predictive efficacy was verified by ROC curves and subgroup analyses. A nomogram was then generated and validated by ROC, calibration, and decisive curves. Immune cell infiltration was estimated with ssGSEA method. Potential small molecular compounds were predicted via CTRP and CMap analyses. The response to chemotherapeutic agents was evaluated based on the GDSC project.Results Among hallmarks of cancer, CCP was identified as a dominant risk factor for HCC prognosis. CCP-derived gene signature displayed the favorable predictive efficacy in HCC prognosis independent of other clinicopathological parameters. A nomogram was generated for optimizing risk stratification and quantifying risk evaluation. CCP-derived signature was in relation to immune cell infiltration, HLA, and immune checkpoint expression. Combining CTRP and CMap analyses, fluvastatin was identified as a promising therapeutic agent against HCC. Furthermore, CCP-derived signature might be applied for predicting the response to doxorubicin and gemcitabine.Conclusion Collectively, CCP-derived gene signature was a promising marker in prediction of survival outcomes and therapeutic responses for HCC patients.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom