z-logo
open-access-imgOpen Access
Identification of Diagnostic CpG Signatures in Patients with Gestational Diabetes Mellitus via Epigenome-Wide Association Study Integrated with Machine Learning
Author(s) -
Yan Liu,
Hui Geng,
Bide Duan,
Xiuzhi Yang,
Airong Ma,
Xiaoyan Ding
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/1984690
Subject(s) - cpg site , kegg , epigenome , dna methylation , gestational diabetes , methylation , biology , computational biology , bioinformatics , medicine , genetics , gene , pregnancy , gene expression , gestation , transcriptome
Background Gestational diabetes mellitus (GDM) is the most prevalent metabolic disease during pregnancy, but the diagnosis is controversial and lagging partly due to the lack of useful biomarkers. CpG methylation is involved in the development of GDM. However, the specific CpG methylation sites serving as diagnostic biomarkers of GDM remain unclear. Here, we aimed to explore CpG signatures and establish the predicting model for the GDM diagnosis.Methods DNA methylation data of GSE88929 and GSE102177 were obtained from the GEO database, followed by the epigenome-wide association study (EWAS). GO and KEGG pathway analyses were performed by using the clusterProfiler package of R. The PPI network was constructed in the STRING database and Cytoscape software. The SVM model was established, in which the β -values of selected CpG sites were the predictor variable and the occurrence of GDM was the outcome variable.Results We identified 62 significant CpG methylation sites in the GDM samples compared with the control samples. GO and KEGG analyses based on the 62 CpG sites demonstrated that several essential cellular processes and signaling pathways were enriched in the system. A total of 12 hub genes related to the identified CpG sites were found in the PPI network. The SVM model based on the selected CpGs within the promoter region, including cg00922748, cg05216211, cg05376185, cg06617468, cg17097119, and cg22385669, was established, and the AUC values of the training set and testing set in the model were 0.8138 and 0.7576. The AUC value of the independent validation set of GSE102177 was 0.6667.Conclusion We identified potential diagnostic CpG signatures by EWAS integrated with the SVM model. The SVM model based on the identified 6 CpG sites reliably predicted the GDM occurrence, contributing to the diagnosis of GDM. Our finding provides new insights into the cross-application of EWAS and machine learning in GDM investigation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom