z-logo
open-access-imgOpen Access
Microscopic Analysis of the Rejuvenation Mechanism and Rejuvenation Effect of Asphalt Binders
Author(s) -
Shan Ke,
Chonghao Bao,
Dandan Li,
Chuanfeng Zheng
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/1958968
Subject(s) - rejuvenation , materials science , mechanism (biology) , asphalt , composite material , physics , gerontology , medicine , quantum mechanics
This study investigates the rejuvenation mechanism of asphalt binders at the microscopic level and compares the rejuvenation effects of rejuvenators. A model of rejuvenated asphalt was established on the basis of molecular simulation by adding different doses of two rejuvenators to the aged asphalt. This model was validated in terms of density and surface free energy. The diffusion ability of the rejuvenator was investigated by using a diffusion model and mean square displacement. The deagglomeration ability of rejuvenators on asphaltene was explored by using a radial distribution function. The microscopic mechanism of asphalt rejuvenation was explained. Results show that small molecule structures are more diffusible than long-chain structures, and aromatic ring structures are more attracted than polar functional groups. The rejuvenating effect of the rejuvenator was evaluated in terms of viscosity and cohesive energy density. Results show that the long-chain structure reduces the viscosity value more than the small molecule structure. The aromatic ring structure in the aged asphalt helps to restore the compatibility between the fractions. This study serves as a guide for the selection and development of future rejuvenators.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom