z-logo
open-access-imgOpen Access
Three-Dimensional Stochastic Seepage Field Analysis of Multimedia Embankment
Author(s) -
Xiaoming Zhao,
Shiyu Shang,
Yuanlin Yang,
Mingming Hu
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/1936635
Subject(s) - randomness , hydraulic conductivity , anisotropy , levee , hydraulic head , monte carlo method , standard deviation , head (geology) , spatial variability , random field , geotechnical engineering , geology , mathematics , statistics , soil science , physics , geomorphology , optics , soil water
The soil hydraulic conductivity of an embankment has strong spatial variability due to the spatiotemporal variation, both natural and artificial. The strong randomness of the hydraulic conductivity can be expressed by the coefficient of variation (COV) and the fluctuation scale θ. Moreover, different coefficients of variation and fluctuation scales correspond to different random field structures. To study the characteristics of the three-dimensional stochastic seepage field in an embankment under different COVs and fluctuation scales, we generate a three-dimensional random field of the hydraulic conductivity of multimedia embankment based on the local average subdivision technique. In particular, a calculation method for a three-dimensional random seepage field based on the Monte Carlo method combined with a three-dimensional multimedia random field and a deterministic analysis is proposed. The results showed that after three thousand realizations and considering the randomness of the hydraulic conductivity, the position of the free surface of each section in the embankment differed. The mean value of the total head decreased when the COV increased. Furthermore, when the COV was small, the change in the total head with anisotropy ratio was not evident, while the COV was large. The mean value of the total head increased with the anisotropy ratio. When the anisotropy ratio increased, the mean value of the standard deviation of the total head increased first and then decreased.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom