Segmentation Technology of Nucleus Image Based on U-Net Network
Author(s) -
Jie Fang,
Qingbiao Zhou,
Shuxia Wang
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/1892497
Subject(s) - artificial intelligence , computer science , image segmentation , segmentation , pooling , feature (linguistics) , pattern recognition (psychology) , computer vision , segmentation based object categorization , scale space segmentation , artificial neural network , philosophy , linguistics
To solve the problems of rough edge and poor segmentation accuracy of traditional neural networks in small nucleus image segmentation, a nucleus image segmentation technology based on U-Net network is proposed. First, the U-Net network is used to segment the nucleus image, which stitches the feature images in the channel dimension to achieve feature fusion, and the skip structure is used to combine the low- and high-level features. Then, the subregional average pooling is proposed to improve the global average pooling in the attention module, and an attention channel expansion module is designed to improve the accuracy of image segmentation. Finally, the improved attention module is integrated into the U-Net network to achieve accurate segmentation of the nuclear image. Based on the Python platform, the experimental results show that the proposed segmentation technology can achieve fast convergence, and the mean intersection over union (MIoU) is 85.02%, which is better than other comparison technologies and has a good application prospect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom