z-logo
open-access-imgOpen Access
[Retracted] Deep Convolutional Neural Network and Weighted Bayesian Model for Evaluation of College Foreign Language Multimedia Teaching
Author(s) -
Tingting Liu,
Ning Le
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/1859065
Subject(s) - computer science , convolutional neural network , artificial intelligence , bayesian network , artificial neural network , multimedia , machine learning , natural language processing
In colleges and universities, teaching quality evaluation is an integral part of the teaching management process. Many factors influence it, and the relationship between its evaluation index and instructional quality is complicated, abstract, and nonlinear. However, existing evaluation methods and models have flaws such as excessive subjectivity and randomness, difficulty determining the weight of indicators, easy over-fitting, slow convergence speed, and limited computing power, to name a few. Furthermore, the evaluation index system focuses primarily on teaching attitude, material, and methods, rarely taking into account preparation prior to teaching or the teaching situation throughout the teaching process, resulting in an incomplete evaluation. As a result, learning how to construct a model for objectively, truly, thoroughly, and accurately assessing the teaching quality of colleges and universities is beneficial not only to improving teaching quality but also to promoting scientific decision-making in education. This paper develops a teaching assessment model using a deep convolutional neural network and the weighted Naive Bayes algorithm. Based on the degree of influence of different characteristics on the assessment outcomes, a method to estimate the weight of each evaluation characteristic by employing the related probability of class attributes is proposed, and the corresponding weight is assigned for each evaluation index, resulting in a classification model ideal for teaching assessment that promotes standardization and intelligibility.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom