Integrating Optimized Multiscale Entropy Model with Machine Learning for the Localization of Epileptogenic Hemisphere in Temporal Lobe Epilepsy Using Resting-State fMRI
Author(s) -
Xiaoxuan Fu,
Youhua Wang,
Abdelkader Nasreddine Belkacem,
Qirui Zhang,
Chong Xie,
Yingxin Cao,
Hao Cheng,
Shenghua Chen
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/1834123
Subject(s) - artificial intelligence , receiver operating characteristic , epilepsy , lateralization of brain function , entropy (arrow of time) , temporal lobe , pattern recognition (psychology) , computer science , functional magnetic resonance imaging , principle of maximum entropy , superior frontal gyrus , machine learning , psychology , neuroscience , physics , quantum mechanics
The bottleneck associated with the validation of the parameters of the entropy model has limited the application of this model to modern functional imaging technologies such as the resting-state functional magnetic resonance imaging (rfMRI). In this study, an optimization algorithm that could choose the parameters of the multiscale entropy (MSE) model was developed, while the optimized effectiveness for localizing the epileptogenic hemisphere was validated through the classification rate with a supervised machine learning method. The rfMRI data of 20 mesial temporal lobe epilepsy patients with positive indicators (the indicators of epileptogenic hemisphere in clinic) in the hippocampal formation on either left or right hemisphere (equally divided into two groups) on the structural MRI were collected and preprocessed. Then, three parameters in the MSE model were statistically optimized by both receiver operating characteristic (ROC) curve and the area under the ROC curve value in the sensitivity analysis, and the intergroup significance of optimized entropy values was utilized to confirm the biomarked brain areas sensitive to the epileptogenic hemisphere. Finally, the optimized entropy values of these biomarked brain areas were regarded as the feature vectors input for a support vector machine to classify the epileptogenic hemisphere, and the classification effectiveness was cross-validated. Nine biomarked brain areas were confirmed by the optimized entropy values, including medial superior frontal gyrus and superior parietal gyrus ( p < .01). The mean classification accuracy was greater than 90%. It can be concluded that combination of the optimized MSE model with the machine learning model can accurately confirm the epileptogenic hemisphere by rfMRI. With the powerful information interaction capabilities of 5G communication, the epilepsy side-fixing algorithm that requires computing power can be integrated into a cloud platform. The demand side only needs to upload patient data to the service platform to realize the preoperative assessment of epilepsy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom