Preparation and Characterization of Lauric–Myristic Acid/Expanded Graphite as Composite Phase Change Energy Storage Material
Author(s) -
Dongyi Zhou,
Jiawei Yuan,
Xianghua Xiao,
Yicai Liu
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/1828147
Subject(s) - materials science , differential scanning calorimetry , lauric acid , eutectic system , fourier transform infrared spectroscopy , graphite , phase change material , enthalpy of fusion , melting point , myristic acid , scanning electron microscope , microstructure , composite number , analytical chemistry (journal) , chemical engineering , composite material , thermodynamics , thermal , chromatography , organic chemistry , chemistry , fatty acid , physics , palmitic acid , engineering
Lauric acid (LA) and myristic acid (MA) were used to prepare a binary eutectic mixture. The expanded graphite (EG) was used as the carrier, and the lauric–myristic acid/expanded graphite (LA–MA/EG) composite phase change material was prepared by physical adsorption method. The microstructure, chemical structure, and thermal properties of LA–MA/EG were characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC), Fourier transform infrared spectroscopy (FTIR), and thermal conductivity measurement. The experimental results have shown that the maximum mass ratio of the binary eutectic mixture in the LA–MA/EG composite phase change energy-storing material was 92.2%, and there was physical mixing and has no chemical reaction between LA–MA and EG. The fusion point temperature of LA–MA/EG was 33.4°C, the solidification point temperature was 33.8°C, and the latent heat was 171.1 J/g, which was suitable for building energy storage field. After several thermal cycles, the change of the fusion point and potential heat of the composite phase change materials were very small, and it still has good energy storage performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom