z-logo
open-access-imgOpen Access
Clinicopathological and Prognostic Significance of ABCC3 in Human Glioma
Author(s) -
Dandong Fang,
Wei Huang,
Gang Cheng,
Xiaonan Liu,
Shimin Liu,
Baosen Hou,
Jian Mao,
Hu Zhou
Publication year - 2021
Publication title -
journal of oncology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.228
H-Index - 54
eISSN - 1687-8469
pISSN - 1687-8450
DOI - 10.1155/2021/1827992
Subject(s) - medicine , glioma , oncology , clinical significance , cancer research
Glioma is the most common malignant primary brain tumor with an inferior survival period and unsatisfactory prognoses. Identification of novel biomarkers is important for the improvements of clinical outcomes of glioma patients. In recent years, more and more biomarkers were identified in many types of tumors. However, the sensitive markers for diagnoses and prognoses of patients with glioma remained unknown. In the present research, our team intended to explore the expression and clinical significance of ABCC3 in glioma patients. Sequential data filtration (survival analyses, independent prognosis analyses, ROC curve analyses, and clinical association analyses) was completed, which gave rise to the determination of the relationship between glioma and the ABCC3 gene. Clinical assays on the foundation of CGGA and TCGA datasets unveiled that ABCC3 expression was distinctly upregulated in glioma and predicted a shorter overall survival. In the multivariable Cox analysis, our team discovered that the expression of ABCC3 was an independent prognosis marker for both 5-year OS (HR = 1.118, 95% CI: 1.052–1.188; P < 0.001 ). Moreover, our team also studied the association between ABCC3 expression and clinical features of glioma patients, finding that differential expression of ABCC3 was remarkably related to age, 1p19q codeletion, PRS type, chemo status, grade, IDH mutation state, and histology. Overall, our findings suggested ABCC3 might be a novel prognosis marker in glioma.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom