Rotating Machinery Fault Diagnosis Method Based on Improved Semisupervised Generative Confrontation Network
Author(s) -
Wang Lei,
Qian Li,
Qin Jin
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/1761446
Subject(s) - artificial intelligence , computer science , pattern recognition (psychology) , convolutional neural network , artificial neural network , dimensionality reduction , machine learning
Error diagnosis and detection have become important in modern production due to the importance of spinning equipment. Artificial neural network pattern recognition methods are widely utilized in rotating equipment fault detection. These methods often need a large quantity of sample data to train the model; however, sample data (especially fault samples) are uncommon in engineering. Preliminary work focuses on dimensionality reduction for big data sets using semisupervised methods. The rotary machine’s polar coordinate signal is used to build a GAN network structure. ANN and tiny samples are utilized to identify DCGAN model flaws. The time-conditional generative adversarial network is proposed for one-dimensional vibration signal defect identification under data imbalance. Finally, auxiliary samples are gathered under similar conditions, and CCNs learn about target sample characteristics. Convolutional neural networks handle the problem of defect identification with small samples in different ways. In high-dimensional data sets with nonlinearities, low fault type recognition rates and fewer marked fault samples may be addressed using kernel semisupervised local Fisher discriminant analysis. The SELF method is used to build the optimum projection transformation matrix from the data set. The KNN classifier then learns low-dimensional features and detects an error kind. Because DCGAN training is unstable and the results are incorrect, an improved deep convolutional generative adversarial network (IDCGAN) is proposed. The tests indicate that the IDCGAN generates more real samples and solves the problem of defect identification in small samples. Time-conditional generation adversarial network data improvement lowers fault diagnosis effort and deep learning model complexity. The TCGAN and CNN are combined to provide superior fault detection under data imbalance. Modeling and experiments demonstrate TCGAN’s use and superiority.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom