z-logo
open-access-imgOpen Access
The Effect of Thermal Cycling on the Tensile and Shear Behaviors of the Carbon Nanotube-Reinforced Epoxy
Author(s) -
A. Anvari,
Sanjeev K. Khanna
Publication year - 2021
Publication title -
international journal of aerospace engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.361
H-Index - 22
eISSN - 1687-5974
pISSN - 1687-5966
DOI - 10.1155/2021/1741544
Subject(s) - carbon nanotube , materials science , composite material , epoxy , nanocomposite , ultimate tensile strength , temperature cycling , shear (geology) , graphene , thermal , nanotechnology , physics , meteorology
The aim of this research is to study the tensile and shear properties and mechanical behavior of carbon nanotube- (CNT-) reinforced epoxy after the resulting composites have been exposed to different thermal cycling environments. Single-walled carbon nanotubes (SWCNTs) are cylindrical molecules that consist of rolled-up sheet of single-layer carbon atoms (graphene) with a diameter of less than 1 nanometer (nm). Thermal cycling environments can exist in many conditions, such as in-earth orbit for satellites which rotate around the earth and pass through the sun illumination and earth’s shadow, and for airplanes which fly in different altitudes with different temperatures. Carbon nanotube-reinforced epoxy is one of the nanocomposite materials which have been broadly used in many applications such as aerospace, automotive, electronics, and other industries. The goal of this study is to fabricate this nanocomposite with different multiwall and single-wall CNT concentrations and expose it to different thermal cycle numbers and determine the changes in tensile and shear properties and failure characteristics. For this purpose, tension and short-beam tests have been used in this research. The addition of multiwall CNT produces better mechanical properties compared to the use of SWCNT reinforcement. However, unreinforced epoxy showed the highest mechanical properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom