z-logo
open-access-imgOpen Access
Optimization of the PNG Law for a Dual-Spin Mortar with Fixed Canards
Author(s) -
Pengfei Liu,
Hongsong Cao,
Shunshan Feng,
Hengzhu Liu,
Lifei Cao
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/1741260
Subject(s) - trajectory , trajectory optimization , optimization problem , mathematical optimization , monte carlo method , point (geometry) , control theory (sociology) , fuze , dispersion (optics) , mathematics , computer science , physics , optimal control , statistics , astronomy , artificial intelligence , optics , metallurgy , geometry , control (management) , materials science
The limited instantaneous overload available and the curved trajectory lead to adaptivity problems for the proportional navigation guidance (PNG) of a guided mortar with a fixed-canard trajectory correction fuze. In this paper, the optimization of a PNG law with gravity compensation is established. Instead of using the traditional empirical method, the selection of the proportional navigation constants is formulated as an optimization problem, which is solved using an intelligent optimization algorithm. Two optimization schemes are proposed for constructing corresponding optimization models. In schemes 1 and 2, the sum squared error between the impact point and target and the circular error probability (CEP), respectively, are taken as the objective function. Monte Carlo simulations are conducted to verify the effectiveness of the two optimization schemes, and their guidance performance is compared through trajectory simulations. The simulation results show that the impact point dispersion can be efficiently reduced under both proposed schemes. Scheme 2 achieves a lower CEP, which is approximately 2.9 m and 2.4 times smaller than that achieved by scheme 1. Moreover, the mean impact point is closer to the target.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom