z-logo
open-access-imgOpen Access
Numerical Simulation Algorithm Design of Influence on Existing Tunnel by Underpass Construction of New Tunnel
Author(s) -
Wu Huajun -
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/1734308
Subject(s) - bending moment , settlement (finance) , computer simulation , stability (learning theory) , displacement (psychology) , tunnel construction , structural engineering , computer science , moment (physics) , engineering , simulation , psychology , physics , classical mechanics , machine learning , world wide web , payment , psychotherapist
Simulation is a powerful tool that can be used for systematic planning, analysis, and decision-making. Proper designing is preliminary required to construct a new tunnel over an existing tunnel to ensure safety and durability. Once an underpass tunnel completes, the interaction between the tunnel structure and the nearby soil gains a stable state and the stress of the tunnel is balanced. However, the stability of an existing tunnel is affected if the construction in the nearby area is not properly analyzed. This article proposes a numerical simulation model to empirically analyze lining force and surface settlement in order to ensure safety in engineering practice. The existing tunnel structure working condition is simulated under the new tunnel. The artificial honeybee colony algorithm is used to extract the parameter fusion characteristic value of tunnel influence and the model of estimating the bending moment of group piles. The structural mechanics of existing tunnels under new tunnels are analyzed using the triple bend model to improve the bearing capacity of existing tunnels under new tunnels. Based on the above analysis, numerical simulation experiments are designed. The proposed method has high accuracy and strong fitting ability and can effectively reduce the displacement of existing tunnels. Moreover, the method can improve the bearing capacity of tunnels. For tunneling operation, the results of the simulation may be used as a recommendation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom