Rapid Classification and Analysis for E-Commerce Goods Based on Multitask Learning
Author(s) -
Nana Liu
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/1725544
Subject(s) - computer science , categorization , task (project management) , artificial intelligence , machine learning , product (mathematics) , mechanism (biology) , data mining , philosophy , geometry , mathematics , management , epistemology , economics
Today’s E-commerce is hot, while the categorization of goods cannot be handled better, especially to achieve the demand of multiple tasks. In this paper, we propose a multitask learning model based on a CNN in parallel with a BiLSTM optimized by an attention mechanism as a training network for E-commerce. The results showed that the fast classification task of E-commerce was performed using only 10% of the total number of products. The experimental results show that the accuracy of w-item2vec for product classification can be close to 50% with only 10% of the training data. Both models significantly outperform other models in terms of classification accuracy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom