A Two-Phase Mitosis Detection Approach Based on U-Shaped Network
Author(s) -
Wenjing Lu
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/1722652
Subject(s) - mitosis , phase (matter) , computer science , computational biology , biology , medicine , microbiology and biotechnology , physics , quantum mechanics
This paper proposes a deep learning-based method for mitosis detection in breast histopathology images. A main problem in mitosis detection is that most of the datasets only have weak labels, i.e., only the coordinates indicating the center of the mitosis region. This makes most of the existing powerful object detection methods hardly be used in mitosis detection. Aiming at solving this problem, this paper firstly applies a CNN-based algorithm to pixelwisely segment the mitosis regions, based on which bounding boxes of mitosis are generated as strong labels. Based on the generated bounding boxes, an object detection network is trained to accomplish mitosis detection. Experimental results show that the proposed method is effective in detecting mitosis, and the accuracies outperform state-of-the-art literatures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom