z-logo
open-access-imgOpen Access
Precise Shearer Positioning Technology Using Shearer Motion Constraint and Magnetometer Aided SINS
Author(s) -
Ming Yan,
Zengcai Wang
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/1679014
Subject(s) - inertial navigation system , odometer , navigation system , dead reckoning , kalman filter , celestial navigation , accelerometer , engineering , magnetometer , control theory (sociology) , constraint (computer aided design) , sensor fusion , computer vision , computer science , artificial intelligence , global positioning system , orientation (vector space) , mathematics , geography , mechanical engineering , telecommunications , physics , cartography , control (management) , quantum mechanics , magnetic field , operating system , geometry
The key technology to realize intelligent unmanned coal mining is the strapdown inertial navigation system (SINS); however, the gradual increase of cumulative error during the working process needs to be solved. On the basis of an SINS/odometer (OD)-integrated navigation system, this paper adds magnetometer (MAG)-aided positioning and proposes an SINS/OD/MAG-integrated shearer navigation system. The velocity observation equation is obtained from the speed constraints during shearer movement, and the yaw angle observation equation is obtained from the magnetometer output. The position information of the SINS output is calibrated using these two observations. In order to improve the fault tolerance of the integrated navigation system, an adaptive federated Kalman filter is established to complete the data fusion of the SINS. Experimental results show that the positioning accuracy of the SINS/OD/MAG-integrated navigation system is 75.64% and 74.01% higher in the east and north directions, respectively, than the SINS/OD-integrated navigation system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom