z-logo
open-access-imgOpen Access
[Retracted] Sports Action Recognition Based on GB‐BP Neural Network and Big Data Analysis
Author(s) -
Lidong Wang,
Kai Qiu,
Wang Li
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/1678123
Subject(s) - artificial neural network , computer science , artificial intelligence , boosting (machine learning) , big data , backpropagation , machine learning , action (physics) , pattern recognition (psychology) , data mining , physics , quantum mechanics
In recent years, the application of the gradient boosting-back propagation (GB-BP) neural network algorithm in many industries has brought huge benefits, so how to combine the GB-BP neural network algorithm with sports has become a research hotspot. Based on this, this paper studies the application of the GB-BP neural network algorithm in wrestling, designs the sports athletes action recognition and classification model based on the GB-BP neural network algorithm, first analyzes the research status of wrestling action recognition, and then optimizes and improves the shortcomings of action recognition and big data analysis technology. The GB-BP neural network algorithm can realize the accurate recognition and classification of wrestlers' training actions and carry out big data mining analysis with known action recognition, so as to achieve accurate classification. The experimental results show that the model can play a good role in wrestling and effectively improve the efficiency of wrestlers in training.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom