z-logo
open-access-imgOpen Access
Basketball Sports Injury Prediction Model Based on the Grey Theory Neural Network
Author(s) -
Zhang Fengyan,
Ying Huang,
Wengang Ren
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/1653093
Subject(s) - basketball , gray (unit) , sports injury , artificial neural network , athletes , computer science , artificial intelligence , machine learning , applied psychology , engineering , physical medicine and rehabilitation , physical therapy , psychology , medicine , history , archaeology , radiology
Sports injuries will have an impact on the consistency and systemicity of the training process, as well as athlete training and performance improvement. Many talented athletes have had their careers cut short due to sports injuries. Preventing sports injuries is the best way for basketball players to reduce sports injuries. Many coaches and athletes on sports teams, on the other hand, are unaware of the importance of sports injury prevention. They only realize that the body's sports functions are abnormal when it suffers from sports injuries. As a result, this paper proposes a gray theory neural network-based athlete injury prediction model. First, from the standpoint of a single model, the improved unequal interval model is used to predict sports injury by optimizing the unequal interval model in gray theory. The findings show that it is a good predictor of sports injuries, but it is a poor predictor of the average number of injuries. Following that, in order to overcome the shortcomings of a single model, a gray neural network combination model was used. A combination model of the unequal time interval model and BP neural network was determined and established. The prediction effect is significantly improved by combining the gray neural network mapping model and the coupling model to predict the two characteristics of sports injuries. Finally, simulation experiments show that the proposed method is effective.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom