z-logo
open-access-imgOpen Access
On Some Properties of the New Generalized Fractional Derivative with Non-Singular Kernel
Author(s) -
Khalid Hattaf
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/1580396
Subject(s) - fractional calculus , mathematics , derivative (finance) , kernel (algebra) , stability (learning theory) , order (exchange) , lyapunov function , pure mathematics , nonlinear system , computer science , physics , finance , quantum mechanics , machine learning , financial economics , economics
This paper presents some new formulas and properties of the generalized fractional derivative with non-singular kernel that covers various types of fractional derivatives such as the Caputo–Fabrizio fractional derivative, the Atangana–Baleanu fractional derivative, and the weighted Atangana–Baleanu fractional derivative. These new properties extend many recent results existing in the literature. Furthermore, the paper proposes some interesting inequalities that estimate the generalized fractional derivatives of some specific functions. These inequalities can be used to construct Lyapunov functions with the aim to study the global asymptotic stability of several fractional-order systems arising from diverse fields of science and engineering.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom