z-logo
open-access-imgOpen Access
Dynamic Probability Analysis for Construction Schedule Using Subset Simulation
Author(s) -
Shen Zhang,
Xingyu Wang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/1567261
Subject(s) - computer science , schedule , critical path method , probabilistic logic , estimator , task (project management) , computation , project management , operations research , machine learning , industrial engineering , data mining , artificial intelligence , algorithm , systems engineering , engineering , operating system , statistics , mathematics
Schedule management is an essential part of construction project management. In practical management affairs, many uncertainties may lead to potential project delays and make the schedule risky. To quantify such risk, the Probabilistic Critical Path Method (PCPM) is used to compute the overdue probability. Survey shows it could help project managers understand the schedule better. However, two critical factors limited the application of PCPM: computational efficiency and timeliness. To solve these constraints, we combined subset simulation and statistical learning to build a computationally efficient and dynamic simulation system. Numerical experiment shows that this method can effectively improve the computation efficiency without losing any accuracy and outperforms the other approaches with the same assumptions. Besides, we proposed a machine learning-based way to estimate task duration distributions in PCPM automatically. It collects real-time progress data through user interactions and learns the best PERT-Beta parameters based on these historical data. Our estimator provides our simulation system the ability to handle dynamic assessment without laborious human work. These improvements reduce the limitations of PCPM, making the application of PCPM in practical management affairs possible.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom