z-logo
open-access-imgOpen Access
Distributed Super Nested Arrays: Reduce the Mutual Coupling between Array Antennas
Author(s) -
Hongyong Wang,
Weibo Deng,
Ying Suo,
Xin Zhang,
Yanmo Hu,
Xiaochuan Wu
Publication year - 2021
Publication title -
international journal of antennas and propagation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.282
H-Index - 37
eISSN - 1687-5877
pISSN - 1687-5869
DOI - 10.1155/2021/1563164
Subject(s) - coupling (piping) , direction of arrival , computer science , smoothing , electronic engineering , algorithm , topology (electrical circuits) , engineering , antenna (radio) , telecommunications , electrical engineering , mechanical engineering , computer vision
In array, mutual coupling between the antennas is inevitable, which has an adverse effect on the estimation of parameters. To reduce the mutual coupling between the antennas of distributed nested arrays, this paper proposes a new array called the distributed super nested arrays, which have the good characteristics of the distributed nested arrays and can reduce the mutual coupling between the antennas. Then, an improved multiscale estimating signal parameter via rotational invariance techniques (ESPRIT) algorithm is presented for the distributed super nested arrays to improve the accuracy of direction-of-arrival (DOA) estimation. Next, we analyze the limitations of the spatial smoothing algorithm used by the distributed super nested arrays when there are multiple-source signals and the influence of the baseline length of distributed super nested arrays on the accuracy of DOA estimation. The simulation results show that the distributed super nested arrays can effectively reduce the mutual coupling between the array antennas, improve the DOA estimation performance, and significantly increase the number of detectable source signals.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom