z-logo
open-access-imgOpen Access
Dynamic Surgery Scheduling Based on an Improved Genetic Algorithm
Author(s) -
Bingbing Zhang,
Qiang Su
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/1559050
Subject(s) - computer science , dynamic priority scheduling , scheduling (production processes) , dynamic programming , mathematical optimization , genetic algorithm , job shop scheduling , algorithm , operations research , mathematics , machine learning , schedule , operating system
We formulated a new stochastic programming formulation to solve the dynamic scheduling problem in a given set of elective surgeries in the day of operation. The problem is complicated by the fact that the exact surgery durations are not known in advance. Elective surgeries could be performed in parallel in a subset of operating rooms. The appointment times and assignments of surgeries were planned by an experienced nurses in advance. We present a mathematical model to capture the nature of dynamic scheduling problem. We propose an efficient solution based on an improved genetic algorithm (IGA). Our numerical results showed that dynamic scheduling with the IGA improves the resource utilization as measured by surgeon waiting time and operation room idle time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom