z-logo
open-access-imgOpen Access
Nonlinear ARIMA Models with Feedback SVR in Financial Market Forecasting
Author(s) -
Shiwei Su
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/1519019
Subject(s) - autoregressive integrated moving average , mean absolute percentage error , mean squared error , mathematics , econometrics , autoregressive model , moving average , support vector machine , nonlinear system , financial market , statistics , time series , computer science , finance , economics , artificial intelligence , physics , quantum mechanics
In recent years, as global financial markets have become increasingly connected, the degree of correlation between financial assets has become closer, and technological advances have made the transmission of information faster and faster, and information networks have integrated capital markets into one, making it easier for single financial market risk problems to form systemic risk through a high degree of market linkage effects. Based on the characteristics of financial markets containing both linear and nonlinear components, this paper chooses to use Autoregressive Integrated Moving Average (ARIMA) model and feedback Support Vector Regression (SVR) models to effectively integrate the ARIMA model and the SVR model, taking into account their respective linear and nonlinear characteristics. The paper chooses to use the (Autoregressive Integrated Moving Average (ARIMA) model and feedback Support Vector Regression (SVR) models to effectively integrate the strengths of the ARIMA and SVR models in terms of linearity and nonlinearity to perform forecasting analysis of financial markets. One of the important functions of forecasting is to transform future uncertainty into measurable risk, so that we can base our plans and actions on it. In this paper, the combined ARIMA-SVR model is compared with the single ARIMA model and SVR model in terms of the mean absolute error (MAE), root mean square error (RMSE), and mean absolute percentage error (MAPE), where MAE and RMSE measure the absolute error between the predicted and true values, and MAPE measures the relative error between the predicted and true values. and the relative error between the true value. The results show that the combined ARIMA-SVR model has a better forecasting effect and higher forecasting accuracy than the single ARIMA model and SVR model, and the SVR model has higher forecasting accuracy than the ARIMA model in forecasting financial markets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom