z-logo
open-access-imgOpen Access
On Hermitian Solutions of the Generalized Quaternion Matrix Equation A X B + C X D = E
Author(s) -
Yong Tian,
Xin Liu,
S. J. Yuan
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/1497335
Subject(s) - quaternion , hermitian matrix , mathematics , matrix (chemical analysis) , matrix representation , pure mathematics , algebra over a field , physics , geometry , quantum mechanics , group (periodic table) , materials science , composite material
The paper deals with the matrix equation A X B + C X   D = E over the generalized quaternions. By the tools of the real representation of a generalized quaternion matrix, Kronecker product as well as vec-operator, the paper derives the necessary and sufficient conditions for the existence of a Hermitian solution and gives the explicit general expression of the solution when it is solvable and provides a numerical example to test our results. The paper proposes a unificated algebraic technique for finding Hermitian solutions to the mentioned matrix equation over the generalized quaternions, which includes many important quaternion algebras, such as the Hamilton quaternions and the split quaternions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom