Hypoplastic Interface Model considering Plane Strain Condition and Surface Roughness
Author(s) -
Yong-Gwang Jong,
Yang Liu,
Zixuan Chen,
Pieride Mabe Fogang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/1473181
Subject(s) - plane stress , surface roughness , materials science , surface finish , nonlinear system , mechanics , plane (geometry) , surface (topology) , coulomb , geometry , structural engineering , mathematics , composite material , engineering , physics , finite element method , quantum mechanics , electron
The soil-structure interface problem is an important part of soil-structure interaction research. These problems are mostly three-dimensional space problems, which is more complex to solve. In this paper, reduced stress and strain rate vectors are incorporated into the explicitly granular hypoplastic model by considering the plane strain state precisely. In addition, considering the important influence of roughness on the mechanical properties of contact surface, an improved hypoplastic model is established by incorporating the influence of roughness into the hypoplastic model, and the applicability of the new improved model is validated by comparing with the simulation results of the Mohr–Coulomb model, the explicitly granular hypoplastic models, and the experimental data. The results indicate that the improved model can be utilized to reflect the nonlinearity of the mechanical properties of the contact surface, which is in good agreement with the experimental data.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom