Permutation-Based Lightweight Authenticated Cipher with Beyond Conventional Security
Author(s) -
Ping Zhang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/1468007
Subject(s) - computer science , block cipher , authenticated encryption , cipher , permutation (music) , pseudorandom permutation , computer security , theoretical computer science , cryptography , encryption , physics , acoustics
Lightweight authenticated ciphers are specially designed as authenticated encryption (AE) schemes for resource-constrained devices. Permutation-based lightweight authenticated ciphers have gained more attention in recent years. However, almost all of permutation-based lightweight AE schemes only ensure conventional security, i.e., about c / 2 -bit security, where c is the capacity of the permutation. This may be vulnerable for an insufficiently large capacity. This paper focuses on the stronger security guarantee and the better efficiency optimization of permutation-based lightweight AE schemes. On the basis of APE series (APE, APE R I , APE O W , and APE C A ), we propose a new improved permutation-based lightweight online AE mode APE + which supports beyond conventional security and concurrent absorption. Then, we derive a simple security proof and prove that APE + enjoys at most about min r , c -bit security, where r is the rate of the permutation. Finally, we discuss the properties of APE + on the hardware implementation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom