z-logo
open-access-imgOpen Access
UWB Indoor Localization Algorithm Using Firefly of Multistage Optimization on Particle Filter
Author(s) -
Xiaoguo Zhang,
Yujin Kuang,
H. Yang,
Hang Lu,
Yuan Yang
Publication year - 2021
Publication title -
journal of sensors
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.399
H-Index - 43
eISSN - 1687-7268
pISSN - 1687-725X
DOI - 10.1155/2021/1383767
Subject(s) - firefly algorithm , particle filter , firefly protocol , algorithm , computer science , particle (ecology) , filter (signal processing) , acoustics , particle swarm optimization , physics , computer vision , biology , zoology , ecology
With the increasing application potential of indoor personnel positioning, ultra-wideband (UWB) positioning technology has attracted more and more attentions of scholars. In practice, an indoor positioning process often involves multipath and Non-Line-Of-Sight (NLOS) problems, and a particle filtering (PF) algorithm has been widely used in the indoor positioning research field because of its outstanding performance in nonlinear and non-Gaussian estimations. Aiming at mitigating the accuracy decreasing caused by the particle degradation and impoverishment in traditional Sequential Monte Carlo (SMC) positioning, we propose a method to integrate the firefly and particle algorithm for multistage optimization. The proposed algorithm not only enhances the searching ability of particles of initialization but also makes the particles propagate out of the local optimal condition in the sequential estimations. In addition, to prevent particles from falling into the oscillatory situation and find the global optimization faster, a decreasing function is designed to improve the reliability of the particle propagation. Real indoor experiments are carried out, and results demonstrate that the positioning accuracy can be improved up to 36%, and the number of needed particles is significantly reduced.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom