z-logo
open-access-imgOpen Access
International Trade Path with Multi-Polarization based on Multidirectional Mutation Genetic Algorithm Enabled Neural Network
Author(s) -
Qing Zhang,
Choo Wei Chong,
Abdul Rashid Abdullah,
Mass Hareeza Ali
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/1370180
Subject(s) - artificial neural network , computer science , path (computing) , genetic algorithm , algorithm , mutation , artificial intelligence , machine learning , computer network , gene , genetics , biology
At present, the development speed of international trade cannot catch up with the economic development speed, and the insufficient development speed of international trade will directly affect the rapid development of national economy. In order to solve the problem of international trade, the overall optimal scheduling of trade vehicles and the optimal planning of trade transportation path are very important to improve enterprise services, reduce enterprise costs, increase enterprise benefits, and enhance enterprise competitiveness. The second development of the program is based on the programming interface provided by Baidu map. This paper proposes a neural network algorithm for genetic optimization of multiple mutations, which overcomes the shortcoming of traditional genetic algorithm population “ten” character distribution by mixing multiple coding methods, and enhances the local search ability of genetic algorithm by introducing a new large-mutation small-range search population. The example application shows that the optimization method can realize the optimization of international trade path under real road conditions and greatly improve the work efficiency of actual trade.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom