z-logo
open-access-imgOpen Access
Analyzing the Cooling Rate and Its Effect on Distribution of Pattern and Size of the Titanium Diboride Particles Formed
Author(s) -
P. Senthil Kumar,
Pon Selvan Chithirai,
D. Antony Prabu,
G. Surya Prakash,
V. Murali Krishna,
Jemal Mohammed Yimer
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/1364423
Subject(s) - materials science , titanium diboride , exothermic reaction , ingot , microstructure , crucible (geodemography) , titanium , graphite , aluminium , metallurgy , composite material , ceramic , thermodynamics , alloy , chemistry , physics , computational chemistry
In this work, we synthesize Al/TiB2 metal matrix composites (MMC) based on the effect of cooling rate in the melt while pouring into the permanent mold condition. The objective of this paper is to achieve the desired distribution pattern and increased TiB2 particles’ size in the Al/TiB2 MMC ingot. Two halide salts, viz., potassium hexafluorotitanate (K2TiF6) and potassium tetrafluoroborate (KBF4), are procured and measured. The two salts were mixed with the aluminium melt in the crucible, and it is stirred manually with help of a graphite rod. Because of the exothermic reaction, the melt reacts very quickly and that is what dropped the salts slowly. The salt particles were synthesized because of the exothermic reaction, and it will allow the particles to grow. The size and distribution of particles differ at different place in the MMC. An FEA tool ProCAST was used to analyze the cooling rate of the melt, and SEM is used to study the microstructure of the ingot at different places. The microstructures helped to identify the size of reinforcement in the MMC. The TiB2 particles are distributed more at this location at 810°C, and the TiB2 particles formed various clusters in this zone as 70%–80%. Also, the tribological characteristics are analyzed with the help of the results.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom