z-logo
open-access-imgOpen Access
Equipment Maintenance Support Effectiveness Evaluation Based on Improved Generative Adversarial Network and Radial Basis Function Network
Author(s) -
Zhen Li,
Hao Jian-ping,
Cuijuan Gao
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/1332242
Subject(s) - overfitting , radial basis function , initialization , artificial neural network , generalization , computer science , radial basis function network , artificial intelligence , function (biology) , benchmark (surveying) , machine learning , early stopping , algorithm , mathematics , evolutionary biology , biology , mathematical analysis , geodesy , programming language , geography
Due to the lack of maintenance support samples, maintenance support effectiveness evaluation based on the deep neural network often faces the problem of small sample overfitting and low generalization ability. In this paper, a neural network evaluation model based on an improved generative adversarial network (GAN) and radial basis function (RBF) network is proposed to amplify maintenance support samples. It adds category constraint based on category probability vector reordering function to GAN loss function, avoids the simplification of generated sample categories, and enhances the quality of generated samples. It also designs a parameter initialization method based on parameter components equidistant variation for RBF network, which enhances the response of correct feature information and reduces the risk of training overfitting. The comparison results show that the mean square error (MSE) of the improved GAN-RBF model is 5.921 × 10 − 4 , which is approximately 1/2 of the RBF model, 1/3 of the Elman model, and 1/5 of the BP model, while its complexity remains at a reasonable level. Compared with traditional neural network evaluation methods, the improved GAN-RBF model has higher evaluation accuracy, better solves the problem of poor generalization ability caused by insufficient training samples, and can be more effectively applied to maintenance support effectiveness evaluation. At the same time, it also provides a good reference for evaluation research in other fields.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom