z-logo
open-access-imgOpen Access
Multiplicative Watermarking Method with the Visual Saliency Model Using Contourlet Transform
Author(s) -
Jinhua Liu,
Jiawen Huang,
Yuanyuan Huang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/1325573
Subject(s) - watermark , contourlet , digital watermarking , computer science , artificial intelligence , human visual system model , computer vision , pattern recognition (psychology) , embedding , peak signal to noise ratio , generalized normal distribution , mathematics , image (mathematics) , wavelet transform , wavelet , statistics , normal distribution
We have proposed an image adaptive watermarking method by using contourlet transform. Firstly, we have selected high-energy image blocks as the watermark embedding space through segmenting the original image into nonoverlapping blocks and designed a watermark embedded strength factor by taking advantage of the human visual saliency model. To achieve dynamic adjustability of the multiplicative watermark embedding parameter, the relationship between watermark embedded strength factor and watermarked image quality is developed through experiments with the peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM), respectively. Secondly, to detect the watermark information, the generalized Gaussian distribution (GGD) has been utilized to model the contourlet coefficients. Furthermore, positions of the blocks selected, watermark embedding factor, and watermark size have been used as side information for watermark decoding. Finally, several experiments have been conducted on eight images, and the results prove the effectiveness of the proposed watermarking approach. Concretely, our watermarking method has good imperceptibility and strong robustness when against Gaussian noise, JPEG compression, scaling, rotation, median filtering, and Gaussian filtering attack.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom