z-logo
open-access-imgOpen Access
Supply Chain Risk Prevention and Control Based on Fuzzy Influence Diagram and Discrete Hopfield Neural Network
Author(s) -
Xin Su,
Maohua Zhong
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/1319932
Subject(s) - supply chain , artificial neural network , control (management) , computer science , cash flow , supply chain risk management , risk prevention , risk analysis (engineering) , risk management , supply chain management , service management , business , artificial intelligence , finance , marketing
Efficient and reasonable supply chain management helps enterprises improve their efficiency, reduce costs, shorten cash flow times, and reduce enterprise risks. Risk prevention and control is a safety symbol for supply chains. To explore different influence degrees of multirisk factors and multilinks on enterprises, we propose a supply chain risk prevention and control model based on a fuzzy influence diagram and Hopfield neural network. Using the model that both calculates the risk size and occurrence probability of the supply chain and allows identifying various risk prevention and control levels, the supply chain risk is evaluated both objectively and fairly. We analyzed the theoretical and practical properties of supply chain risk prevention and control models and used it in the H company to illustrate this model.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom