z-logo
open-access-imgOpen Access
miR-181a Ameliorates the Progression of Myasthenia Gravis by Regulating TRIM9
Author(s) -
Qiang Wang,
Yunquan Liu,
Shixiang Kuang,
Ruozhao Li,
Ning Weng,
Zhichao Zhou
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/1303375
Subject(s) - pathogenesis , myasthenia gravis , proinflammatory cytokine , peripheral blood mononuclear cell , immunology , immune system , downregulation and upregulation , medicine , in vivo , inflammation , in vitro , biology , gene , biochemistry , microbiology and biotechnology
Abnormally activated CD4+ T cells are considered to be an important factor in the pathogenesis of myasthenia gravis (MG). In the pathogenesis of MG, the imbalance of proinflammatory cytokines and immune cells maintains the imbalance of immune response and inflammatory microenvironment. Studies have shown that miRNA is involved in the pathogenesis of MG. In our experiment, we extracted peripheral blood mononuclear cells (PBMCs) from MG patients and detected the expression of miR-181a and TRIM9 in PBMCs by qRT-PCR. In vitro experiments were conducted to explore the regulatory mechanism of miR-181a on target genes and its influence on inflammatory factors related to MG disease. Experimental autoimmune myasthenia gravis (EAMG) model mice are established, and the effects of miR-181a on EAMG symptoms and inflammatory factors are explored through in vivo experiments. According to a total of 40 EAMG mice that were successfully modeled, all EAMG mice showed symptoms of muscle weakness; their diet was reduced; their weight gain was slow; and even weight loss occurred. In MG patients and EAMG mice, the expression of miR-181a was low and TRIM9 was highly expressed. Bioinformatics website and dual-luciferase report analysis of miR-181a had a targeting relationship with TRIM9, and miR-181a could target the expression of TRIM9. After upregulating miR-181a or interfering with TRIM9, serum miR-181a in EAMG mice was significantly upregulated; TRIM9 was significantly downregulated; its clinical symptoms were reduced; and the expression of inflammatory factors was reduced. The study finally learned that miR-181a can reduce the level of MG inflammatory factors by targeting the expression of TRIM9 and has the effect of improving the symptoms of MG.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom