Object-Level Remote Sensing Image Augmentation Using U-Net-Based Generative Adversarial Networks
Author(s) -
Jian Huang,
Shanhui Liu,
Yutian Tang,
Xiushan Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/1230279
Subject(s) - computer science , net (polyhedron) , object (grammar) , adversarial system , generative grammar , artificial intelligence , image (mathematics) , generative adversarial network , computer vision , object based , mathematics , geometry
With the continuous development of deep learning in computer vision, semantic segmentation technology is constantly employed for processing remote sensing images. For instance, it is a key technology to automatically mark important objects such as ships or port land from port area remote sensing images. However, the existing supervised semantic segmentation model based on deep learning requires a large number of training samples. Otherwise, it will not be able to correctly learn the characteristics of the target objects, which results in the poor performance or even failure of semantic segmentation task. Since the target objects such as ships may move from time to time, it is nontrivial to collect enough samples to achieve satisfactory segmentation performance. And this severely hinders the performance improvement of most of existing augmentation methods. To tackle this problem, in this paper, we propose an object-level remote sensing image augmentation approach based on leveraging the U-Net-based generative adversarial networks. Specifically, our proposed approach consists two components including the semantic tag image generator and the U-Net GAN-based translator. To evaluate the effectiveness of the proposed approach, comprehensive experiments are conducted on a public dataset HRSC2016. State-of-the-art generative models, DCGAN, WGAN, and CycleGAN, are selected as baselines. According to the experimental results, our proposed approach significantly outperforms the baselines in terms of not only drawing the outlines of target objects but also capturing their meaningful details.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom