Research on Image Recognition of Building Wall Design Defects Based on Partial Differential Equation
Author(s) -
Xiwen Yu,
Kai Wang,
Shaoxuan Wang
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/1229660
Subject(s) - partial differential equation , scale space , kernel (algebra) , mathematics , feature (linguistics) , image (mathematics) , dimension (graph theory) , artificial intelligence , pattern recognition (psychology) , computer vision , computer science , algorithm , image processing , mathematical analysis , linguistics , philosophy , combinatorics , pure mathematics
The detection of building wall surface defects is of great significance to eliminate potential safety hazards. In this paper, a research on building wall design defect image recognition based on partial differential equation is proposed. Collect the image data of building surface defects, sample and quantify the collected images, and preprocess the defect images such as digital threshold segmentation, filtering, and enhancement. Then, the improved partial differential equation is used to recognize the image as a whole. The second-order partial differential diffusion equation and the fourth-order partial differential equation are used to recognize the high-frequency and low-frequency bands of the image, respectively. The kernel principal component analysis algorithm is used to transfer the overall image input space to the high-dimensional feature space. The kernel function is used to calculate the inner product in different subband images of the high-dimensional feature space to reduce the dimension of the overall image. The processed coefficients are inversely transformed by nondownsampling contour wave to realize the overall image recognition and ensure that the edge information of the source image does not disappear. Experimental results show that compared with other algorithms, the proposed algorithm has better effect and better stability.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom