z-logo
open-access-imgOpen Access
Influence of Variable Nonlocal Parameter and Porosity on the Free Vibration Behavior of Functionally Graded Nanoplates
Author(s) -
Pham Van Vinh,
Le Quang Huy
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/1219429
Subject(s) - porosity , vibration , materials science , elasticity (physics) , equations of motion , mechanics , power law , classical mechanics , mathematical analysis , mathematics , composite material , physics , acoustics , statistics
This paper studies the influence of the variable nonlocal parameter and porosity on the free vibration behavior of the functionally graded nanoplates with porosity. Four patterns of distribution of the porosity through the thickness direction are considered. The classical nonlocal elasticity theory is modified to take into account the variation of the nonlocal parameter through the thickness of the nanoplates. The governing equations of motion are established using simple first-order shear deformation theory and Hamilton’s principle. The closed-form solution based on Navier’s technique is employed to solve the governing equations of motion of fully simply supported nanoplates. The accuracy of the present algorithm is proved via some comparison studies in some special cases. Then, the effects of the porosity, the variation of the nonlocal parameter, the power-law index, aspect ratio, and the side-to-thickness ratio on the free vibration of nanoscale porous plates are investigated carefully. The numerical results show that the porosity and nonlocal parameter have strong effects on the free vibration behavior of the nanoplates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom