Design of Personalized Recommendation System for Swimming Teaching Based on Deep Learning
Author(s) -
Zhan Shi,
Wei Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/1211059
Subject(s) - hobby , computer science , event (particle physics) , test (biology) , personalized learning , multimedia , deep learning , human–computer interaction , artificial intelligence , teaching method , mathematics education , psychology , paleontology , physics , quantum mechanics , political science , law , open learning , biology , cooperative learning
Swimming is not only an entertaining hobby but also a sporting event. It is a sport for strengthening the body. Although there are many swimming coaches, there are different swimming teaching courses. However, choosing the right swimming instructor or course is the motivation for learning swimming activities. To this end, this paper conducts related research on the personalized recommendation system for swimming teaching based on deep learning with the purpose of improving the accuracy of the recommendation system to meet the needs of the users and promote the development of swimming events. This article mainly uses the experimental test method, the system construction method, and the questionnaire survey method to analyze and study the personalized swimming teaching system and the students’ attitude to it and draw a conclusion finally. The data results show that the accuracy of the system designed in this paper can meet the basic requirements. Hence, it can bring an excellent experience to the users. According to the questionnaire data, 85%–95% of people have great confidence in the personalized recommendation system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom