Analysis of the Spatio-Temporal Evolution and Factors Influencing the Freight Network in the Middle Reaches of the Yangtze River
Author(s) -
ShuMin Huang,
Yin Huang,
Xiaofan Zhang,
Sishi Sheng,
Lisha Mao,
Xiangni Huang,
Runda Liu,
Biao Huang
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/1167950
Subject(s) - yangtze river , python (programming language) , flow network , node (physics) , transport engineering , computer science , business , economic geography , geography , regional science , china , engineering , mathematics , mathematical optimization , archaeology , structural engineering , operating system
The study uses python software to crawl O-D big data on the freight information platform and construct a frequency matrix based on freight connections between cities, then forming a freight network. There are 31 cities in the middle reaches of the Yangtze river that form the subject of the research. The study adopts the methods of the node degree, community analysis, network motif analysis, and multielement regression analysis to assess the differences of the spatio-temporal evolution and factors influencing the freight network in 2014 and 2018. The following conclusions can be drawn: (1) the freight network has experienced a change in pattern from “island” to “radial,” and the tightness of the freight network is strengthened. (2) The circulation accumulation of elements causes the change of node degree to have a high tendency of agglomeration of capital and central cities. (3) The phenomenon of “enclave freight” and “freight union” exists in the inner-city group, but the “freight alliance” formed by the “enclave” is relatively loose. (4) With the increase in the scale of the freight network, the module characteristics are gradually simplified. (5) Science and technology run through the entire process of the formation and development of the urban freight network.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom