Deep Learning for Intelligent Recognition and Prediction of Endometrial Cancer
Author(s) -
Yan Zhang,
Cui-Lan Gong,
Ling Zheng,
Xiaoyan Li,
Xiaomei Yang
Publication year - 2021
Publication title -
journal of healthcare engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.509
H-Index - 29
eISSN - 2040-2309
pISSN - 2040-2295
DOI - 10.1155/2021/1148309
Subject(s) - radiomics , convolutional neural network , magnetic resonance imaging , artificial intelligence , deep learning , artificial neural network , endometrial cancer , computer science , machine learning , predictive modelling , medicine , cancer , radiology
The aim of the study was to investigate the intelligent recognition of radiomics based on the convolutional neural network (CNN) in predicting endometrial cancer (EC). In this study, 158 patients with EC in hospital were selected as the research objects and divided into a training group and a test group. All the patients underwent magnetic resonance imaging (MRI) before surgery. Based on the CNN, the imaging model of EC prediction was constructed according to the characteristics. Besides, the comprehensive prediction model was established through the clinical information and imaging parameters. The results showed that the area under the working characteristic curve (AUC) of the radiomics model and comprehensive prediction model was 0.897 and 0.913 in the training group, respectively. In addition, the AUC of the radiomics model was 0.889 in the test group and that of the comprehensive prediction model was 0.897. The comprehensive prediction model was established through specific imaging parameters and clinical pathological information, and its prediction performance was good, indicating that radiomics parameters could be applied as noninvasive markers to predict EC.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom