z-logo
open-access-imgOpen Access
Image Features of Magnetic Resonance Imaging under the Deep Learning Algorithm in the Diagnosis and Nursing of Malignant Tumors
Author(s) -
Sun LiFang,
Xi Hu,
Yutao Liu,
Hengyu Cai
Publication year - 2021
Publication title -
contrast media and molecular imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.714
H-Index - 50
eISSN - 1555-4317
pISSN - 1555-4309
DOI - 10.1155/2021/1104611
Subject(s) - fluid attenuated inversion recovery , algorithm , magnetic resonance imaging , convolutional neural network , medicine , artificial intelligence , deep learning , computer science , radiology
In order to explore the effect of convolutional neural network (CNN) algorithm based on deep learning on magnetic resonance imaging (MRI) images of brain tumor patients and evaluate the practical value of MRI image features based on deep learning algorithm in the clinical diagnosis and nursing of malignant tumors, in this study, a brain tumor MRI image model based on the CNN algorithm was constructed, and 80 patients with brain tumors were selected as the research objects. They were divided into an experimental group (CNN algorithm) and a control group (traditional algorithm). The patients were nursed in the whole process. The macroscopic characteristics and imaging index of the MRI image and anxiety of patients in two groups were compared and analyzed. In addition, the image quality after nursing was checked. The results of the study revealed that the MRI characteristics of brain tumors based on CNN algorithm were clearer and more accurate in the fluid-attenuated inversion recovery (FLAIR), MRI T1, T1c, and T2; in terms of accuracy, sensitivity, and specificity, the mean value was 0.83, 0.84, and 0.83, which had obvious advantages compared with the traditional algorithm ( P < 0.05). The patients in the nursing group showed lower depression scores and better MRI images in contrast to the control group ( P < 0.05). Therefore, the deep learning algorithm can further accurately analyze the MRI image characteristics of brain tumor patients on the basis of conventional algorithms, showing high sensitivity and specificity, which improved the application value of MRI image characteristics in the diagnosis of malignant tumors. In addition, effective nursing for patients undergoing analysis and diagnosis on brain tumor MRI image characteristics can alleviate the patient's anxiety and ensure that high-quality MRI images were obtained after the examination.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom