z-logo
open-access-imgOpen Access
A Network That Balances Accuracy and Efficiency for Lane Detection
Author(s) -
Ce Zhang,
Yu Han,
Dan Wang,
Wei Qiao,
Yier Lin
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/1099434
Subject(s) - computer science , context (archaeology) , construct (python library) , polynomial , artificial intelligence , boundary (topology) , algorithm , polynomial regression , regression , pattern recognition (psychology) , computer vision , machine learning , regression analysis , mathematics , statistics , mathematical analysis , paleontology , biology , programming language
In the automatic lane-keeping system (ALKS), the vehicle must stably and accurately detect the boundary of its current lane for precise positioning. At present, the detection accuracy of the lane algorithm based on deep learning has a greater leap than that of the traditional algorithm, and it can achieve better recognition results for corners and occlusion situations. However, mainstream algorithms are difficult to balance between accuracy and efficiency. In response to this situation, we propose a single-step method that directly outputs lane shape model parameters. This method uses MobileNet v2 and spatial CNN (SCNN) to construct a network to quickly extract lane features and learn global context information. Then, through depth polynomial regression, a polynomial representing each lane mark in the image is output. Finally, the proposed method was verified in the TuSimple dataset. Compared with existing algorithms, it achieves a balance between accuracy and efficiency. Experiments show that the recognition accuracy and detection speed of our method in the same environment have reached the level of mainstream algorithms, and an effective balance has been achieved between the two.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom