Exploiting Two‐Level Information Entropy across Social Networks for User Identification
Author(s) -
Ling Xing,
Kaikai Deng,
Honghai Wu,
Ping Xie,
Mingchuan Zhang,
Qingtao Wu
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/1082391
Subject(s) - computer science , identification (biology) , entropy (arrow of time) , information retrieval , data mining , data science , quantum mechanics , biology , physics , botany
As the popularity of online social networks has grown, more and more users now hold multiple virtual accounts at the same time. Under these circumstances, identifying multiple social accounts belonging to the same user across different social networks is of great importance for many applications, such as user recommendation, personalized services, and information fusion. In this paper, we mainly aggregate user profile information and user behavior information, then measures and analyzes the attributes contained in these two types of information to implement across social networks user identification. Moreover, as different user attributes have different effects on user identification, this paper therefore proposes a two-level information entropy-based weight assignment method (TIW) to weigh each attribute. Finally, we combine the scoring formula with the bidirectional stable marriage matching algorithm to achieve optimal user account matching and thereby obtain the final matching pairs. Experimental results demonstrate that the proposed two-level information entropy method yields excellent performance in terms of precision rate, recall rate, F -measure ( F 1 ), and area under curve (AUC).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom