Efficacy of Oxidized Regenerated Cellulose/Collagen Dressing for Management of Skin Wounds: A Systematic Review and Meta-Analysis
Author(s) -
Li Zhang,
Simei Wang,
Meihua Tan,
Hong-Wei Zhou,
Ying Tang,
Yan Zou
Publication year - 2021
Publication title -
evidence-based complementary and alternative medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.552
H-Index - 90
eISSN - 1741-4288
pISSN - 1741-427X
DOI - 10.1155/2021/1058671
Subject(s) - cellulose , wound dressing , chemistry , medicine , materials science , composite material , biochemistry
Objective The purpose of this study was to evaluate the wound healing efficacy of oxidized regenerated cellulose (ORC)/collagen dressing and ORC/collagen/silver-ORC dressings compared to standard of care or control in treatment of chronic skin wounds such as diabetic foot ulcers (DFUs), venous leg ulcers (VLUs), and pressure injuries sore ulcers (PISUs).Methods An electronic search was carried out in four popular databases PubMed, Scopus, Embase, and CENTRAL to identify thirteen included studies, comparing the clinical efficacy of ORC/collagen dressings when compared to control in management of chronic skin wounds, especially DFUs, VLUs, and PISUs, and skin graft donor site wounds.Results Consolidated data from thirteen comparative clinical studies undertaken for management of DFUs, VLUs, and PISUs showed favorable outcomes towards use of ORC/collagen compared to other traditional and hydrocolloid foam dressings in terms of wound healing rate ( P =0.02) and percentage wound relative reduction ( P =0.003). The time taken to achieve complete wound healing in the included studies did not show any statistical significant difference ( P =0.24). There was no significant difference in adverse events between ORC/collagen-treated group and comparative group ( P =0.19).Conclusion ORC/collagen wound dressings are beneficial in terms of improved wound healing rate and percentage wound relative reduction compared to already existing traditional standard of care with non-MMP, inhibiting biomaterials such as moistened gauze, autologous growth factors, hydrocolloid foam dressings, or ovine extracellular matrix.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom