z-logo
open-access-imgOpen Access
Passenger Flow Prediction of Integrated Passenger Terminal Based on K-Means–GRNN
Author(s) -
Yifan Tan,
Haixu Liu,
Yun Pu,
Xuemei Wu,
Yubo Jiao
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/1055910
Subject(s) - cluster analysis , flow (mathematics) , transport engineering , passenger transport , artificial neural network , index (typography) , engineering , scale (ratio) , computer science , simulation , artificial intelligence , mathematics , world wide web , physics , quantum mechanics , geometry
As the passenger flow distribution center cooperating with various modes of transportation, the comprehensive passenger transport hub brings convenience to passengers. With the diversification of passenger travel modes, the passenger flow scale gradually increases, which brings significant challenges to the integrated passenger hub. Therefore, it is urgent to solve the problem of early warning and response to the future passenger flow to avoid congestion accidents. In this paper, the passenger flow GRNN prediction model is proposed, based on the K-means cluster algorithm, and an improved index named BWPs (Between-Within Proportion-Similarity) is proposed to improve the clustering effect of K-means so that the clustering effect of the new index is verified. In addition, the passenger flow data are studied and trained by combining with the GRNN neural network model based on parameter optimization (GA); the passenger flow prediction model is obtained. Finally, the passenger flow of Chengdu East Railway Station has been taken as an example, which is divided into 16 models, and each type of passenger flow is predicted, respectively. Compared with the traditional method, the results show that the model can predict the passenger flow with high accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom