The Local and Parallel Finite Element Scheme for Electric Structure Eigenvalue Problems
Author(s) -
Fubiao Lin,
Junying Cao,
Zixin Liu
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/1049917
Subject(s) - eigenvalues and eigenvectors , eigenfunction , finite element method , mathematics , singularity , discretization , truncation (statistics) , bounded function , mathematical analysis , truncation error , transformation (genetics) , domain (mathematical analysis) , divide and conquer eigenvalue algorithm , physics , biochemistry , statistics , chemistry , quantum mechanics , gene , thermodynamics
In this paper, an efficient multiscale finite element method via local defect-correction technique is developed. This method is used to solve the Schrödinger eigenvalue problem with three-dimensional domain. First, this paper considers a three-dimensional bounded spherical region, which is the truncation of a three-dimensional unbounded region. Using polar coordinate transformation, we successfully transform the three-dimensional problem into a series of one-dimensional eigenvalue problems. These one-dimensional eigenvalue problems also bring singularity. Second, using local refinement technique, we establish a new multiscale finite element discretization method. The scheme can correct the defects repeatedly on the local refinement grid, which can solve the singularity problem efficiently. Finally, the error estimates of eigenvalues and eigenfunctions are also proved. Numerical examples show that our numerical method can significantly improve the accuracy of eigenvalues.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom