z-logo
open-access-imgOpen Access
Design and Implementation of a Robust Convolutional Neural Network‐Based Traffic Matrix Estimator for Cloud Networks
Author(s) -
Rashida Ali Memon,
Sameer Qazi,
Bilal Khan
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/1039613
Subject(s) - computer science , convolutional neural network , cloud computing , estimator , computer network , artificial intelligence , statistics , operating system , mathematics
Recent research literature shows promising results by convolutional neural network(CNN-) based approaches for estimation of traffic matrix of cloud networks using different architectures. Although conventionally, convolutional neural network-based approaches yield superior estimation; however, these rely on assumptions of availability of a large training dataset which is completely accurate and nonsparse. In real world, both these assumptions are problematic as training data size may be limited, and it is also prone to missing (or incomplete) measurements as well as may have measurement errors. Similarly, the 2-D training datasets derived from network topology based may be sparse. We investigate these challenges and develop a novel architecture which can cater for these challenges and deliver superior performance. Our approach shows promising results for traffic matrix estimation using convolutional neural network-based techniques in the presence of limited training data and outlier measurements.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom