A Multistep Prediction of Hydropower Station Inflow Based on Bagging-LSTM Model
Author(s) -
Lulu Wang,
Hanmei Peng,
Mao Tan,
Rui Pan
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/1031442
Subject(s) - inflow , hydropower , computer science , lag , nonlinear system , artificial neural network , environmental science , artificial intelligence , meteorology , engineering , computer network , physics , quantum mechanics , electrical engineering
The inflow forecasting is one of the most important technologies for modern hydropower station. Under the joint influence of soil, upstream inflow, and precipitation, the inflow is often characterized by time lag, nonlinearity, and uncertainty and then results in the difficulty of accurate multistep prediction of inflow. To address the coupling relationship between inflow and the related factors, this paper proposes a long short-term memory deep learning model based on the Bagging algorithm (Bagging-LSTM) to predict the inflows of future 3 h, 12 h, and 24 h, respectively. To validate the proposed model, the inflow and related weather data come from a hydropower station in southern China. Compared with the classical time series models, the results show that the proposed model outperforms them on different accuracy metrics, especially in the scenario of multistep prediction.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom