Prediction of 90-Day Mortality among Sepsis Patients Based on a Nomogram Integrating Diverse Clinical Indices
Author(s) -
Qingbo Zeng,
Longping He,
Nianqing Zhang,
Qingwei Lin,
Lincui Zhong,
Jingchun Song
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/1023513
Subject(s) - nomogram , medicine , receiver operating characteristic , logistic regression , cohort , intensive care unit , area under the curve , sepsis , retrospective cohort study , emergency medicine , cohort study , multivariate analysis , framingham risk score , intensive care medicine , disease
Background Sepsis is prevalent among intensive care units and is a frequent cause of death. Several studies have identified individual risk factors or potential predictors of sepsis-associated mortality, without defining an integrated predictive model. The present work was aimed at defining a nomogram for reliably predicting mortality.Methods We carried out a retrospective, single-center study based on 231 patients with sepsis who were admitted to our intensive care unit between May 2018 and October 2020. Patients were randomly split into training and validation cohorts. In the training cohort, multivariate logistic regression and a stepwise algorithm were performed to identify risk factors, which were then integrated into a predictive nomogram. Nomogram performance was assessed against the training and validation cohorts based on the area under receiver operating characteristic curves (AUC), calibration plots, and decision curve analysis.Results Among the 161 patients in the training cohort and 70 patients in the validation cohort, 90-day mortality was 31.6%. Older age and higher values for the international normalized ratio, lactate level, and thrombomodulin level were associated with greater risk of 90-day mortality. The nomogram showed an AUC of 0.810 (95% CI 0.739 to 0.881) in the training cohort and 0.813 (95% CI 0.708 to 0.917) in the validation cohort. The nomogram also performed well based on the calibration curve and decision curve analysis.Conclusion This nomogram may help identify sepsis patients at elevated risk of 90-day mortality, which may help clinicians allocate resources appropriately to improve patient outcomes.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom